

Towards Real-Time Detection of Meteorological Tsunami-Generated Ionospheric Disturbances Using Stand-Alone GNSS Receivers

*Giorgio Savastano*¹, Esayas Shume¹, Attila Komjathy¹, Xing Meng¹, Panagiotis Vergados¹, Olga Verkhoglyadova¹, Yoaz Bar-Sever¹, Anthony J. Mannucci¹

¹ Ionospheric and Atmospheric Remote Sensing Group, Jet Propulsion Laboratory, California Institute of Technology

Dailin Wang²,

² NOAA Pacific Tsunami Warning Center

Michela Ravanelli³, Augusto Mazzoni³ and Mattia Crespi³

³ Department of Civil, Building and Environmental Engineering, University of Rome "La Sapienza"

© 2018. All Rights Reserved.

Outline

Objectives

Study the ionospheric response to meteotsunami event Separate contribution of mesoscale convective system and meteotsunami

Introduction

Introduction to meteotsunami event system
Introduction to tsunami-induced TIDs detection from the ionosphere

Methodology

Details of the VARION algorithm
Details of the WP-GITM model

Results

Atlantic Meteotsunami – Jun 13, 2013 event

Conclusions and Prospects

Introduction - Meteotsunami

Introduction

Methodology- VARION

Methodology

- Variation of sTEC
 - Dual-frequency phase observations (1s, 15s, 30s)
 - Geometry-free combination to remove geometry, clocks and all non-dispersive effects
 - Time single differences of geometry-free observations (phase ambiguity removed as for IFB, assuming a constant for a given period)
 - Cycle slips can be detected as outliers
- Total sTEC perturbation
 - Integration of sTEC variations

Real-Time sTEC solutions for TIDs detection

Savastano et al., 2017

Methodology- WP-GITM

For Tsunamis

Input I solar wind conditions, solar irradiance, auroral particle precipitation

Output Ionospheric and thermospheric disturbances

Input II

Tsunami wave characteristics (amplitude, direction, period, speed)

Meng et al., 2015

Results

Ionospheric Response to The 2013 Meteotsunami Event

- Event date: 13 June 2013, 18:50 UTC
- Area affected: U.S. Atlantic Coast
- Tsunami source: Mesoscale Convective System (MCS)
- Damages: economical and several injures

Mesoscale Convective System

- Weather system moving offshore was the tsunami source
- Storm speed = wave speed: Proudman resonance

NOAA PTWC RIFT Model

Atlantic shelf break **reflected back** the waves towards U.S. East Coast

Tsunami wave characteristics:

- Amplitude = 20 cm
- Period = 20 min
- **Speed** = 30 m/s
- **Direction** = 120° East

VARION Results

- GPS+GLONASS constellations
- Cut-off elevation angle: 30 degree
- **Day Before**: 12 June, 2013

Day Event: 13 June, 2013

TIDs detected during the MCS+Meteotsunami event

VARION Results

VARION Results

TIDs detected during the meteotsunami event

Wavelet Analysis

WP-GITM Simulations

Tsunami Speed = 30 m/s

Tsunami Speed = 250 m/s

Tsunami Speed: key parameter for the ocean/ionosphere coupling

WP-GITM Simulations

- Tsunami Speed = 30 m/s
- Wave Direction = 120° East

- Tsunami Speed = 30 m/s
- Wave Direction = 45° East

Wave Direction: key parameter for the ocean/ionosphere coupling

Conclusions and Prospects

Conclusions

- Ionospheric response was a combination of effects: Mesoscale Convective System (MCS) + Meteotsunami
- Tsunami speed is a key parameter for WP-GITM to describe the coupling ocean/ionosphere
- Wave direction is an important parameter for WP-GITM because of the Earth's geomagnetic field lines

Future Work

- Add more high-quality ionospheric observation using GEO and MEO satellites
- Perform a sensitivity analysis with WP-GITM to better characterize the ionospheric response with different parameters

Future Work

GEO

Motivation for using geostationary (GEO) satellite to:

Improve detection of meteotsunami-generated TIDs

Separate spatial and temporal variability of ionospheric disturbances

Advantages of using GEO Satellites:

- GNSS satellite geometry effect removed
- Provides continuous TEC Time Series

Acknowledgments

- NASA Postdoctoral Program (NPP) and USRA
- JPL's GDGPS System for providing access to the real-time GNSS data for this analysis
- Michele Vallisneri for his great help in implementing the VARION Webpage
- Byron lijima and Larry Romans for their help with the real-time stream of data

Thanks for your attention